Genetic inactivation of AKT1, AKT2, and PDPK1 in human colorectal cancer cells clarifies their roles in tumor growth regulation.
نویسندگان
چکیده
Phosphotidylinositol-3-kinase (PI3K) signaling is altered in the majority of human cancers. To gain insight into the roles of members of this pathway in growth regulation, we inactivated AKT1, AKT2, or PDPK1 genes by targeted homologous recombination in human colon cancer cell lines. Knockout of either AKT1 or AKT2 had minimum effects on cell growth or downstream signaling. In contrast, knockout of both AKT1 and AKT2 resulted in markedly reduced proliferation in vitro when growth factors were limiting and severely affected experimental metastasis in mice. Unexpectedly, AKT1 and AKT2 appeared to regulate growth through FOXO proteins, but not through either GSK3beta or mTOR. In contrast, inactivation of PDPK1 affected GSK3beta and mTOR activation. These findings show that the PI3K signaling pathway is wired differently in human cancer cells than in other cell types or organisms, which has important implications for the design and testing of drugs that target this pathway.
منابع مشابه
Editorial Expression of Concern for multiple articles
Correction for “Genetic inactivation of AKT1, AKT2, and PDPK1 in human colorectal cancer cells clarifies their roles in tumor growth regulation,” by Kajsa Ericson, Christine Gan, Ian Cheong, Carlo Rago, Yardena Samuels, Victor E. Velculescu, Kenneth W. Kinzler, David L. Huso, Bert Vogelstein, and Nickolas Papadopoulos, which appeared in issue 6, February 9, 2010, of Proc Natl Acad Sci USA (107:...
متن کاملAKT1 and AKT2 isoforms play distinct roles during breast cancer progression through the regulation of specific downstream proteins
The purpose of this study was to elucidate the mechanisms associated with the specific effects of AKT1 and AKT2 isoforms in breast cancer progression. We modulated the abundance of specific AKT isoforms in IBH-6 and T47D human breast cancer cell lines and showed that AKT1 promoted cell proliferation, through S6 and cyclin D1 upregulation, but it inhibited cell migration and invasion through β1-...
متن کاملAkt2 overexpression plays a critical role in the establishment of colorectal cancer metastasis.
Colorectal cancer is the second leading cause of cancer-related deaths in the United States. Understanding the distinct genetic and epigenetic changes contributing to the establishment and growth of metastatic lesions is crucial for the development of novel therapeutic strategies. In a search for key regulators of colorectal cancer metastasis establishment, we have found that the serine/threoni...
متن کاملDifferent functions of AKT1 and AKT2 in molecular pathways, cell migration and metabolism in colon cancer cells
AKT is a central protein in many cellular pathways such as cell survival, proliferation, glucose uptake, metabolism, angiogenesis, as well as radiation and drug response. The three isoforms of AKT (AKT1, AKT2 and AKT3) are proposed to have different physiological functions, properties and expression patterns in a cell type-dependent manner. As of yet, not much is known about the influence of th...
متن کاملAkt2 knock-down reveals its contribution to human lung cancer cell proliferation, growth, motility, invasion and endothelial cell tube formation
The Akt/PKB serine/threonine protein kinase consists of three isoforms: Akt-1, -2 and -3. Their overexpression has been detected in human cancers, but their roles in cancer progression are unclear. We investigated the impact of specific silencing of Akt1 and Akt2 on human lung cancer cell proliferation, colony growth, motility, and invasion in vitro as well as tumor growth in vivo using human N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 6 شماره
صفحات -
تاریخ انتشار 2010